math - Why we use CORDIC gain? -


i'm studying cordic. , found cordic gain. k=0.607xxx.

from cordic, k_i = cos(tan^-1(2^i)).

as know k approched 0.607xxx.when going infinity

this value come k multiplying.

i understand reason of exist each k. curioused used ? why use value k=0.607xx?

the scale factor rotation mode of circular variant of cordic can established first principles. idea behind cordic take point on unit circle , rotate it, in steps, through angle u sine , cosine want determine.

to end define set of incremental angles a0, ..., an-1, such ak = atan(0.5k). sum these incremental angles appropriately partial sum of angles sk, such sn ~= u. let yk = cos(sk) , xk = sin(sk). if in given step k rotate ak, have

yk+1 = cos (sk+1) = cos (sk + ak)
xk+1 = sin (sk+1) = sin (sk + ak)

we can compute xk+1 , yk+1 xk , yk follows:

yk+1 = yk * cos (ak) - xk * sin (ak)
xk+1 = xk * cos (ak) + yk * sin (ak)

considering may both add , subtract ak, , tan(ak) = sin(ak)/cos(ak), get:

yk+1 = cos (ak) * (yk ∓ xk * tan(ak)) = cos (sk+1)
xk+1 = cos (ak) * (xk ± yk * tan(ak)) = sin (sk+1)

to simplify computation, can leave out multiplication cos(ak) in every step, gives our cordic iteration scheme:

yk+1 = y ∓ xk * tan(ak)
xk+1 = x ± yk * tan(ak)

because of our choice of ak, multiplications tan(ak) turn simple right shifts if compute in fixed-point arithmetic. because left off factors cos(ak), wind with

yn ~= cos(u) * (1 / (cos (a0) * cos (a1) * ... * cos (an))
xn ~= sin(u) * (1 / (cos (a0) * cos (a1) * ... * cos (an))

the factor f = cos (a0) * cos (a1) * ... * cos (an) 0.607..., noted. incorporate computation setting starting values

y0 = f * cos(0) = f
x0 = f * sin(0) = 0

here c code shows entire computation in action, using 16-bit fixed-point arithmetic. input angles scaled such 360 degrees correspond 216, while sine , cosine outputs scaled such 1 corresponds 215.

#include <stdio.h> #include <stdlib.h> #include <math.h>  /* round (atand (0.5**i) * 65536/360) */ static const short a[15] =  {     0x2000, 0x12e4, 0x09fb, 0x0511,      0x028b, 0x0146, 0x00a3, 0x0051,      0x0029, 0x0014, 0x000a, 0x0005,      0x0003, 0x0001, 0x0001 };  #define swap(a,b){a=a^b; b=b^a; a=a^b;}  void cordic (unsigned short u, short *s, short *c) {     short x, y, oldx, oldy, q;     int i;      x = 0;     y = 0x4dba;  /* 0.60725 */     oldx = x;     oldy = y;      q = u >> 14;    /* quadrant */     u = u & 0x3fff; /* reduced angle */     u = -(short)u;      = 0;     {         if ((short)u < 0) {             x = x + oldy;             y = y - oldx;             u = u + a[i];         } else {             x = x - oldy;             y = y + oldx;             u = u - a[i];         }         oldx = x;         oldy = y;         i++;         /* right shift of signed negative number implementation defined in c */         oldx = (oldx < 0) ? (-((-oldx) >> i)) : (oldx >> i);         oldy = (oldy < 0) ? (-((-oldy) >> i)) : (oldy >> i);     } while (i < 15);      (i = 0; < q; i++) {         swap (x, y);         y = -y;     }      *s = x;     *c = y; }  int main (void) {     float angle;     unsigned short u;     short s, c;      printf ("angle in degrees [0,360): ");     scanf ("%f", &angle);     u = (unsigned short)(angle * 65536.0f / 360.0f + 0.5f);     cordic (u, &s, &c);     printf ("sin = % f  (ref: % f)  cos = % f (ref: % f)\n",             s/32768.0f, sinf(angle/360*2*3.14159265f),              c/32768.0f, cosf(angle/360*2*3.14159265f));     return exit_success; } 

Comments

Popular posts from this blog

python - How to create jsonb index using GIN on SQLAlchemy? -

PHP DOM loadHTML() method unusual warning -

c# - TransactionScope not rolling back although no complete() is called -